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Abstract

The holographic grating technique of thermal diffusion forced Rayleigh scattering (TD-

FRS) utilizes the Ludwig-Soret effect to induce a concentration modulation within a

binary liquid. The signal generation is described in terms of a linear response formalism,

and the memory function for the concentration mode g(t) and its Fourier transformed,

the diffusion susceptibility, are measured by means of pseudostochastic random binary

sequences with flat power spectra in combination with fast Fourier transform and cor-

relation techniques. For polydisperse polymer solutions the individual modes contribute

proportional to their concentration to g(t), contrary to photon correlation spectroscopy,

where the correlation function is dominated by the high molar mass components. Other

advantages of stochastic TDFRS are time scale delocalization of dust spikes and frequency

multiplexing. Measurements are reported on monodisperse and bimodal polystyrene in

toluene.

KEY WORDS: diffusion, forced Rayleigh scattering, Fourier transform, Ludwig-Soret

effect, polymer solutions, stochastic excitation, thermal diffusion
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1 Introduction

A holographic interference grating written into a binary liquid, e.g. a polymer solution,

gives rise to a secondary concentration grating driven by the Ludwig-Soret effect, also

termed thermal diffusion [1, 2, 3]. From such thermal diffusion forced Rayleigh scattering

(TDFRS) experiments various transport coefficients, like the thermal diffusivity, the mu-

tual diffusion coefficient, the thermal diffusion coefficient, and the Soret coefficient, can be

determined in a very direct way. Due to the µm diffusion length, the corresponding sub-

second diffusion times, and the very subtle perturbations of the sample, many problems

associated with long term stability in traditional diffusion cell experiments disappear.

With respect to the measurement of center of mass diffusion there exist several similar-

ities between TDFRS and photon correlation spectroscopy (PCS), but also significant

differences. PCS relies on thermodynamic concentration fluctuations. In dilute polymer

solutions the scattering, which is proportional to the molar mass, is dominated by the

high molar mass components, and few heavy particles, can completely mask low molar

mass contributions.

TDFRS, on the other hand, allows for a coherent excitation with a single well defined

q-vector. Since thermal diffusion is driven by the applied temperature grating, there is

considerable freedom in the selection of the excitation time pattern, and periodic ampli-

tude modulation has been proposed in the literature [4].

It has been shown that for dilute polymer solutions TDFRS can be employed for polydis-

persity analysis of dilute polymer solutions. The memory or the linear response function,

which fully characterizes a linear system, is of particular interest because of the even

concentration proportional statistical weights of the different molar mass components [5].

Simple attempts to measure the memory function directly by means of short excitation

pulses suffer, however, from poor signal-to-noise ratios due to the low spectral power den-

sity of the excitation. Measurements with finite length pulses yield good signal-to-noise

ratios, but only the convolution of the memory function with the excitation. Due to

’holes’ in the spectrum a simple deconvolution is not possible.

In the following it is shown how pseudostochastic random binary sequences together with

fast Fourier transform and correlation techniques can be employed to provide excitations

with approximately white power spectra and high spectral power density for the measure-

ment of the linear response function of the concentration mode. Not all random binary

sequences, however, fulfil the requirement of a flat power spectrum. Excitations with de-

convolutable random binary sequences may also be viewed as spectroscopic experiments
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in the frequency domain with frequency multiplexing, which yield the complex diffusion

susceptibility, defined as the Fourier transformed of the linear response function.

2 Theory

2.1 TDFRS Signal generation

In the following the concept of TDFRS will be outlined in a compact notation to provide

the fundamental equations needed for the main part of this paper. For a more detailed

discussion of the phenomenological model and the experimental setup the reader is referred

to the literature [1, 2, 3, 5, 6, 7, 8].

For a description of the Ludwig-Soret effect in a binary liquid an extension of Fick’s

second law of diffusion is employed to calculate the temporal and spatial evolution of

the concentration c(x, t), measured in weight fractions, under the boundary conditions

imposed by the experiment:

∂c

∂t
= D∆c +DT c(1− c)∆T . (1)

T (x, t) is the time dependent temperature distribution, D the translational and DT the

thermal diffusion coefficient. For TDFRS, T (x, t) is obtained from the heat equation with

the energy absorbed from the optical interference grating I(x, t) = I0 +Iqeiqx as the source

term:
∂T

∂t
= Dth∆T +

α

ρcp
(I0 + Iqe

iqx) (2)

Because of the underlying symmetry of the holographic experiment, a onedimensional de-

scription has been adopted with the x-axis defined by the grating vector q = 4πλ−1 sin θ/2.

θ is the angle between the two writing beams, Dth the thermal diffusivity, α the absorp-

tion coefficient, ρ the density, and cp the specific heat at constant pressure. From Eq. 2

the time dependent temperature distribution

T (x, t) = Tq(t)e
iqx (3)

with

Tq(t) =
α

ρcp

∫ t

−∞
dt′Iq(t

′)e−(t−t′)/τth (4)

is obtained, neglecting spatially constant terms. τth = (Dthq
2)−1 is the heat diffusion time

constant. Knowing T (x, t) the time dependent concentration distribution is obtained from

Eq. 1:

c(x, t) = c0 + cq(t)e
iqx (5)
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with

cq(t) = −q2DT c0(1− c0)
∫ t

−∞
dt′Tq(t

′)e−(t−t′)/τ . (6)

τ = (Dq2)−1 is the mass diffusion time constant. Since the concentration changes are

generally very subtle, the approximation c0 ≈ c will be used in the following.

Both c and T couple to the refractive index n, resulting in a phase grating

n(x, t)− n0 = nq(t)e
iqx = [(

∂n

∂T
)c,pTq(t) + (

∂n

∂c
)T,pcq(t)]e

iqx (7)

which is read by Bragg diffraction of a readout beam.

The heterodyne diffraction efficiency ζhet(t), which is proportional to the refractive index

modulation depth nq(t), is obtained after normalization to the signal generated by the

temperature grating alone:

ζhet(t) = [τth
α

ρcp
I0]
−1
∫ t

−∞
dt′g(t− t′)Tq(t

′) . (8)

The memory or linear response function g(t) is 1

g(t) =


δ(t)− (∂n

∂c
)p,T ( ∂n

∂T
)−1
p,cq

2DT c(1− c)e−t/τ t ≥ 0

0 t < 0
(9)

Dilute solutions of polydisperse polymers, which cannot be described by a single diffusive

mode, are of particular interest. In this case Eq. 9 must be replaced by a sum over all

species k present in the sample:

g(t) =
∑
k

gk(t) = δ(t) +
∑
k

ake
−t/τk (10)

ak = −q2(
∂n

∂T
)−1
p,c(

∂n

∂ck
)p,T,cl6=k DT,kck . (11)

Here the dilute solution approximation c(1− c) ≈ c has been made.

At least in case of dilute solutions of high polymers there is a time scale separation of more

than three decades between the heat and the concentration mode, and for experiments on

the time scale of the concentration mode the temperature grating almost instantaneously

follows the optical one. Furthermore, (∂n/∂ck)p,T and DT are approximately independent

of molar mass [9], which reduces the molar mass dependence of ak to the concentration

ck.

Generally, an experiment measures a convolution of the memory function of the concen-

tration mode, g(t), with the time dependent temperature excitation Tq(t). A straight

1contrary to G(t) used in previous publications, g(t) has been chosen for a more consistent notation
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forward experiment consists of a long excitation pulse of finite length τp � τk and con-

stant amplitude. For polydisperse polymer solutions this results in a multiexponential

decay function with statistical weights akτk for the k-th mode.

Ideally, the memory function g(t), which contains all information that can be learned

from a linear experiment, would be measured directly. In the most simple case this

is accomplished by shortening the excitation pulse to τp � τk, where a multiexponential

decay function with statistical weights proportional to ak or, within above approximations,

proportional to ck is obtained [5].

It is of interest to compare heterodyne TDFRS with the electric field autocorrelation

function as measured by PCS, the most widely applied technique for the measurement

of diffusion coefficients. With a scaling relation D ∝ M−b, b ≤ 1, for the molar mass

dependence of the diffusion coefficient the statistical weights for the multiexponential

decay functions are ckMα
k , where α is characteristic for the experiment [5]. For TDFRS

with short pulses α = 0, with long excitation pulses α = b is found. The change of

the average rate 〈Γ〉 = 〈τ−1〉 as a function of exposure time is shown in Fig. 1 for a

polydisperse sample. For PCS α = 1, resulting in a strong overestimation of the high

molar mass components in the PCS autocorrelation function.
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Figure 1: Exposure time dependence of the average rate 〈Γ〉 for a mixture

of polystyrene with M = 48 and M = 556 kg/mol at equal concentration

of 0.0029 weight fractions. Exposure ranges from t = 0 up to the start of

the respective decay curve. The data are taken from reference [5].

6



2.2 Measurement of the memory function

The problem when measuring g(t) directly by employing short exposure times is obvious

from the vanishing signal amplitudes in the insert in Fig. 1, resulting in poor signal-to-

noise ratios. The alternative of a straight forward deconvolution of a measurement with a

finite pulse length is also not feasible due to holes in the power spectrum of the excitation.

A rather elegant way to measure the response function of a linear system emerged with

the cheap availability of fast digital computer hardware in combination with fast Fourier

transform and correlation algorithms. The basic idea is to use a deconvolutable excitation

with a flat, e.g. white, power spectrum of high spectral power density in combination

with tailored deconvolution or correlation techniques. Such excitations can be realized

by means of suitable pseudostochastic binary noise sequences. A special variant of such

sequences, maximum length binary sequences (MLBS) [10], has successfully been used for

Hadamard-NMR-spectroscopy [11].

Fundamental equations: Before turning to the actual experiment some general fea-

tures of linear systems, as far as they pertain to TDFRS, will briefly be summarized in

a problem-independent notation. Later the respective quantities will be mapped to the

TDFRS experiment. The convention obeyed is as follows:

Signals are continuous functions in the time domain and denoted in lower case with

the argument in parentheses, e.g. x(t). Sampling at constant intervals ∆t produces

a discrete approximation x[n] to the continuous signal, which is only defined at times

t = n∆t, n = 0, 1, 2 . . . . Square brackets are used for the arguments of discrete functions.

The Fourier transform establishes the connection between the time and frequency domain

[12]:

x(t) =
1

2π

∫ ∞
−∞

dω X(ω) eiωt (12)

X(ω) =
∫ ∞
−∞

dt x(t) e−iωt (13)

Frequency domain functions are denoted with upper case letters. Of importance for the

TDFRS experiment is the discrete Fourier transform of an array of N data points within

a period of N∆t:

x[n] =
1

N

N−1∑
k=0

X[k] e2πink/N (14)

X[k] =
N−1∑
n=0

x[n] e−2πink/N (15)
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The connection with the frequency scale is given by

ωk =
2πk

N∆t
. (16)

The response y(t) of a linear system to an excitation x(t) is a convolution of x(t) with

the response function h(t):

y(t) = x(t) ∗ h(t) ≡
∫ t

−∞
dt′x(t′)h(t− t′) (17)

The TDFRS experiments discussed are performed with periodic boundary conditions,

asking for the discrete periodic convolution

y[n] = x[n] ∗ h[n] ≡
N−1∑
i=0

x[i]h[(n− i)modN ] . (18)

The convolution theorem turns Eqs. 17 and 18 into simple products in frequency space:

Y = X H (19)

The discrete periodic correlation is defined in analogy as

y[n] = x[n]× h[n] ≡
N−1∑
i=0

x[i]h[(n+ i)modN ] , (20)

Y = X∗ H . (21)

X∗ is the complex conjugate of X. No arguments are used in Eqs. 19 and 21 since they

apply to both the continuous and discrete case.

From Eqs. 19 and 21 it is immediately evident that h is obtained from the deconvolution

H =
Y

X
=
Y X∗

|X|2
, (22)

followed by the transition to the time domain according to Eq. 12. From the right hand

side of Eq. 22 it follows that h may also be determined by cross correlation of the sample

response y with the excitation x in case of a white power spectrum with |X|2 = 1.

Definition of the response function: Before Eq. 22 can be applied to the experimen-

tal problem the signal flow in the experiment must be considered in detail to identify the

proper response function, the corrections that must be applied, and the errors inferred by

discrete sampling of the continuous signals. The signal flow is summarized in Fig. 2, and

a suitable mapping between the signals in the figure and the actual physical quantities is

the following:
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experiment

x * hx[n] y[n]

e[n]

T

g  (t)T

DAC dt

c, n
x(t) x"(t)x’(t)

g(t)

h(t)

sample

Pockels c.
y"(t)

e(t)

y(t)

Computer
y[n]x[n]

Figure 2: Sketch of the signal generation. See text for details.

A discrete binary sequence x[n] of 1 and -1, defined at times n∆t, n = 0, 1 . . . N − 1,

is generated within the computer memory and converted to a continuous binary voltage

signal x(t), which drives the high voltage generator for the Pockels cell. The resulting

amplitude of the optical interference grating, x′(t) ≡ Iq(t)/I0, excites the sample, which

in principle could be described by a single response function h′(t) = gT (t) ∗ g(t). h′(t)

is the convolution of the heat and the concentration mode as indicated by the dashed

bracket in Fig. 2.

Due to the time scale separation of 3 to 4 decades between both modes it is, however,

more convenient to focus on the response of the concentration mode and convolute the

heat mode gT (t) = τ−1
th exp(−t/τth) into the effective excitation, hence

x′′(t) = Tq(t)[
α

ρcp
I0τth]−1 . (23)

Tq(t) is given in Eqs. 3 and 4.

Now, the effective linear response function h(t) can be identified with g(t) as defined in

Eqs. 9 and 10: h(t) ≡ g(t) . It contains both the response of the concentration mode and

the infinitely fast translation of the concentration and the driving temperature grating

into the measurable heterodyne diffraction efficiency y′′(t) ≡ ζhet(t). The instantaneous

contribution of the temperature grating to the diffraction efficiency is expressed by the δ-

function in g(t). After the sample an unavoidable noise term e(t) is added. The continuous

signal y(t) is sampled by integrating with an ideal detector over time intervals ∆t to obtain

the time discrete sequence y[n] for processing in the computer.
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There are several reasons why we focus on g(t) and not the entire response function of the

sample, gT (t) ∗ g(t). The first one is trivial, since our main interest is not heat transport

but mass and thermal diffusion in polymeric systems. Furthermore, experience shows that

in a typical experiment with long step-like excitations the measured amplitudes from both

modes are approximately equal. Since these saturation amplitudes are proportional to

the respective time constants τth and τ , it is straight forward to show that this translates

into a difficult to handle amplitude ratio of up to 104 between the fast heat and the slow

concentration mode in the total response function gT (t) ∗ g(t). By convoluting gT (t) into

the excitation and employing sample times τth � ∆t � τ the disparity between both

signal amplitudes reduces to a much more convenient O(τ/∆t).

In summary, the TDFRS experiment converts an ideal time discrete excitation x[n] into a

time discrete signal y[n], involving both linear and nonlinear components like the sample

itself or the Pockels cell. The task is to extract the response h(t) ≡ g(t) from y[n] when

x[n] is known. This idealized view of the experiment is shown in the lower part of Fig. 2.

All the missing components from the upper part of Fig. 2 are treated as perturbations,

which can be accounted for in a well conducted experiment.

2.3 Selection of the excitation pattern

So far not much has been said about the excitation sequence x[n], except that the con-

siderations will be restricted to binary sequences of amplitude +1 and -1, corresponding

to 180◦ phase jumps of the holographic intensity grating at maximum modulation depth.

Such binary sequences combine the advantage of high spectral power density for linear

heterodyne detection with easy experimental handling.

Noise amplification: The total power P in the excitation is obtained from Parseval’s

theorem:

P =
N−1∑
k=0

|X[k]|2 = N
N−1∑
n=0

x[n]2 (24)

Since the power at zero frequency, |X[0]|2, merely adds a constant background without

much information content, the requirement for maximum excitation power P+ at positive

frequencies is

P+ =
N−1∑
k=1

|X[k]|2 = N
N−1∑
n=0

x[n]2 − (
N−1∑
n=0

x[n])2 = N2(〈x2〉 − 〈x〉2) . (25)

P+ reaches maximum for 〈x〉 = 0. Hence, an excitation sequence should contain at least

approximately the same number of +1 and -1.
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Further constraints are imposed by the unavoidable noise term e[n], which adds to the

signal:

Y = XH + E . (26)

The arguments are omitted and the frequency domain notation has been chosen for sim-

plicity. After deconvolution the experimentally determined memory function contains the

true memory function plus an error term:

Y X∗

|X|2
= H + E

X∗

|X|2
(27)

From Eq. 27 the amplification Uk of the spectral power density of the noise is

Uk = |
X∗[k]

|X[k]|2
|2 = |X[k]|−2 , (28)

and the integral noise amplification

U =
N−1∑
k=0

|X[k]|−2 . (29)

U is minimized for a constant white power spectrum with |X[k]|2 = N according to Eq.

24, yielding U = 1. All deviations from the constant power spectrum increase the integral

noise amplification U . They may, however, be employed for noise suppression at selected

frequencies.

Arbitrary random binary sequences generally have a globally flat power spectrum but a

high noise amplification due to a locally rugged structure of the spectral power density

with large values of Uk. Efficient excitation sequences can be generated from random

binary sequences by successive optimization. This problem is equivalent to the one of

minimizing the energy of an Ising spin system, where the spins are represented by the

excitation pulses (+1 or -1) and the energy U is defined in Eq. 29. With simple one-spin-

flip optimization, where subsequently all spins are tested and flipped only if the energy

is reduced, U ≈ 1.15 is easily achieved. More sophisticated techniques, like simulated

annealing, give only slight improvements [13]. For practical purposes such optimized

sequences are almost ideal. As an example, optimization reduces the noise amplification

of a particular but arbitrarily chosen random binary sequence of length N = 212 from

U = 17.3 to U = 1.18, which is almost identical to the theoretical limit U = 1 for all

practical purposes.

Another class of suitable excitations with a perfectly white power spectrum are maximum

length binary sequences (MLBS) of length N = 2L − 1, L being a positive integer [10].

MLBS have been employed in Hadamard NMR spectroscopy [11], and the deconvolution
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according to Eq. 22 is efficiently computed by means of a fast Hadamard transform. The

performance of MLBS in TDFRS is approximately the same as the one of optimized ran-

dom sequences. Some peculiarities have been found for MLBS with respect to systematic

distortions introduced by the Pockels cell [14]. The computational effort for MLBS of

length N = 2L − 1 and sequences of length 2L is comparable when fast finite Fourier

transform algorithms are used.

2.4 Corrections and limitations

The parts of the experiment that have been omitted when using the simplified description

according to Fig. 2 necessitate some corrections and impose limitation that will briefly

be discussed in the following.

0 1 2 3 4 5 6 7n =

d1

d2

0 1 2 3 4 5 6 7n =

∆t
t

t

c

b

a

d

x(t)

y[n]

x"(t) = y"(t)

Figure 3: Details of the measurement: ideal excitation (a), amplitude

of the temperature grating and of the heterodyne signal for c = 0 (b),

effect of sampling for y(t) → y[n] (c), and fictive correction to the ideal

excitation (d).

Fig. 3 gives a closer look of the measurement process for a hypothetic sample, for simplic-

ity without dissolved polymer. The binary sequence x[n] = [−1,−1, 1, 1, 1,−1,−1,−1 . . .]

is defined at times t = n∆t and converted to the continuous excitation x(t), which keeps

the value x[n] from t = n∆t until t = (n + 1)∆t as indicated by the dashed line in Fig.

3a.

The temperature grating x′′(t) (Fig. 3b) does not follow x(t) instantaneously because of

its finite time constant τth � ∆t and because there is a delay of several µs caused by the
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high voltage driver for the Pockels cell, which is asymmetric with respect to the switching

direction (d1 and d2). As a consequence, everytime the excitation changes its sign there

is some intensity missing in the excitation as shown by the shaded areas.

Sampling is done by integration from t = n∆t to t = (n + 1)∆t, and the result is stored

in y[n] (Fig. 3c). To interprete the data as the average over the respective interval the

time scale for g(t) is shifted by ∆t/2 towards higher values.

In the expample, the effect of the missing area manifests itself for y[2] and y[5]. The

finite temperature response and the delay can approximately be accounted for by adding

a fictive excitation xf proportional to the derivative of the ideal excitation to x[n]. The

asymmetry d1 − d2 is incorporated in an analogous way, hence

xf [n] = a(x[n]− x[n− 1]) + b(x[n]− x[n− 1])(1− x[n− 1]) . (30)

xf [n] and xf (t) are shown in Fig. 3d. a and b are constants and can be determined from

separate measurements of the Pockels cell response and τth. In the language of digital

signal analysis a is due to aliasing of signal intensity with frequencies above the Nyquist

frequency ωNy = π/∆t, which are folded back into the frequency interval −ωNy < ωk <

ωNy. a = 0 may be used for simplicity, in which case the thermal amplitude is spread over

a few data points instead of being confined to the first one according to the δ-function

in Eq. 9. The area is, however, preserved. To avoid signal distortion due to aliasing of

the interesting mass diffusion part of the spectrum the sampling time should, as a rule of

thumb, fulfil ∆t ≤ τ/10 for the fastest concentration mode. On the other hand, ∆t should

not be shorter than necessary, since the signal to noise ratio can shown to be proportional

to N1/2∆t. This is an improvement by a factor N1/2 over single pulse δ-excitations with

pulse length ∆t.

3 Experiment

The setup is almost identical to the one used for previous experiments. An argon ion laser

(488 nm) is used for writing and a helium-neon laser (633 nm) for reading. Switching

of the grating is accomplished by 180◦ phase shifts by means of a Pockels cell in one of

the writing beams such that +1 in the excitation sequence corresponds to a phase of 0◦

and -1 to 180◦. A reference wave is provided by scratches or dust on the sample, serving

as local oscillator. The phase between the reference and the signal beams is adjusted

by means of a piezo mirror. A PMT in photon counting mode is used for detection. A

custom made plug-in card in a PC is used for photon counting and also controls the timing
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and synchronization between the excitation sequence and the measured PMT signal. The

measurements are done in bursts of several repetitions of the excitation sequence x[n]

where the first N data points are discarded. Since the system memory is much shorter

than N∆t, truly periodic boundary conditions are achieved.

All experiments have been conducted in heterodyne mode, and the TDFRS setup and the

separation of homodyne and heterodyne signal components has been described in detail

in [7]. The solutions are slightly colored with quinizarin to adjust the optical density

to 0.02 at the writing wavelength. The pathlength of the optical cell is 200 µm. All

measurements have been performed at room temperature.

4 Results

Fig. 4 shows an experiment on almost monodisperse polystyrene (PS, M ≈ 250000 g/mol)

in toluene at a concentration of c = 0.0205. The scattering vector q = 9213 cm−1 is well

within the hydrodynamic limit qRg � 1, where pure center of mass diffusion is observed.

Rg is the radius of gyration of the polymer. The upper part of the insert is a section

of the pulse train of the optimized random binary sequence of length N = 211 used for

excitation with a time resolution of ∆t = 140µs. The lower part of the insert represents

the normalized heterodyne diffraction efficiency. The main portion of Fig. 4 shows the

concentration part of the memory function g(t) as obtained by deconvolution. For the

diffusion time constant τ = 13900 µs, corresponding to D = 5.5× 10−7 cm2s−1 has been

found.

The amplitude of the temperature signal in g(t) is normalized to unity and not plotted

in Fig. 4. Due to aliasing it is spread over the first three data points.

A comparison between TDFRS and PCS for a solution of a bimodal molar mass distribu-

tion is shown in Fig. 5. The sample is a mixture of two PS with 895 and 250000 g/mol

and a dispersity of Mw/Mn ≈ 1.03 in toluene at concentrations of 0.0166 and 0.00228,

respectively.

The heterodyne decay functions for a TDFRS experiment with pseudostochastic noise

excitation and for a TDFRS experiment with step-excitation are plotted together with

the electric field autocorrelation function from PCS in the upper half of Fig. 5. The PCS

experiment has been performed at an angle of 90◦ and a wavelength of 647 nm and the

time scale has been shifted according to τ ∝ q−2. The TDFRS parameters are ∆t = 140µs

and N = 2047. Blocks of 16 repetitions of the excitation sequence have been accumulated
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Figure 4: Memory function g(t) as obtained from optimized random bi-

nary sequence withN = 2048. The insert shows a section of the excitation

sequence and the corresponding measured heterodyne sample response.

between phase stabilizations for heterodyne detection and the signal has been averaged

over 488 such blocks. The same overall time has been used for all three experiments.

The solid lines are biexponential least square fits. Both modes are clearly visible in the

TDFRS measurements, whereas the PCS correlation function is completely dominated

by the slow mode of the high molar mass, despite the sevenfold higher concentration of

the low molar mass component. In a PCS experiment on the low molar mass component

alone no diffusion process that exceeded the baseline noise could be observed.

The lower half of Fig. 5 shows the rate distributions for TDFRS with pseudostochas-

tic noise excitation and for PCS as obtained from an inverse Laplace transform using

CONTIN [15]. Again, both components are clearly resolved by TDFRS. The PCS rate

distribution shows only a large peak for the slow mode. The tiny peak at τ−1 ≈ 1.7×10−3

s−1 is probably an artifact, since its rate is too high when compared with the well resolved

TDFRS. The amplitude ratio obtained from the rate distribution for g(t) is 6.8, which is

reasonably close to the one expected from the polymer concentrations and the refractive

index increments: [c1(∂n/∂c1)p,T ][c2(∂n/∂c2)p,T ]−1 = 5.9. For the refractive index incre-

ments the zero concentration values (0.0736 and 0.0907) of the respective molar mass

polymers (895 and 250000 g/mol) have been determined using an interferometric refrac-
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Figure 5: Comparative measurement of bimodal PS in toluene with PCS

and TDFRS with optimized random binary sequence and with step exci-

tation; decay functions (upper) and rate distributions (lower). The fast

mode of the light component (895 g/mol) is marked by arrows.

tometer [16]. The molar mass dependence of (∂n/∂c)p,T is due to end group effects of the

short chains. From g(t) the thermal diffusion coefficient is calculated according to Eqs.

10 and 11 as DT = 1.12 × 10−7 cm2(sK)−1, which is in excellent agreement with results

found previously in the same laboratory [6].

Fig. 6 shows the diffusion susceptibility, which has directly been obtained from the
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Figure 6: Diffusion susceptibility |G(ω)|2 as obtained from the measure-

ment of g(t) in Fig. 5 with least square fit of two Lorentzians, which are

also plotted separately.

measurement as the Fourier transformed of g(t) from Fig. 5, plotted as |G(ω)|2. The solid

lines are least square fits of the two Lorentzians corresponding to the two approximately

exponential modes in g(t):

|G(ω)|2 = |
a1τ1

1 + iωτ1

+
a2τ2

1 + iωτ2

|2 (31)

5 Summary and conclusion

Signal generation in heterodyne TDFRS can be formulated in the language of linear re-

sponse theory. For the measurement of diffusion processes it is advantageous to focus on

the concentration modes and to lump the temperature response into the excitation. Espe-

cially for dilute polymer solutions the response function g(t) of the concentration modes

shows interesting properties like concentration proportional amplitudes of the individual

molar mass components. While, due to a poor signal-to-noise ratio, a straight forward

measurement of g(t) as response to a δ-excitation is not feasible, pseudostochastic random

binary sequences provide an elegant and efficient access to g(t).

For a correct interpretation of the experiment various corrections and and limitations

must be considered to avoid problems from e.g. aliasing. Perfectly white power spectra
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are realized with MLBS. Optimized random binary sequences offer almost the same noise

amplification and the additional opportunity of coloring the excitation spectrum by shift-

ing energy into interesting frequency ranges. A detailed discussion of colored spectra is,

however, beyond the scope of this paper.

Besides the direct measurement of the linear response function, pseudostochastic random

binary sequences provide additional advantages such as time scale delocalization and fre-

quency multiplexing. As a consequence of time scale delocalization a singular perturbation

from e.g. dust particles does not deform the decay function locally but is spread over the

entire time axis as random noise. Frequency multiplexing drastically reduces the stability

requirement for experiments in the frequency domain in order to obtain the diffusion sus-

ceptibility G(ω). If all frequencies were measured subsequently, stability over the whole

duration of the experiment would be required, whereas frequency multiplexing reduces

the stability requirement to several excitation periods N∆t.

From a well conducted experiment precise values for the transport coefficients are ob-

tained, as has been demonstrated for a bimodal PS mixture. For this polydisperse sample

both components are resolved and the low molar mass component has been recovered

with a large concentration proportional amplitude, whereas the PCS correlation function

is entirely dominated by the heavy component.
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[5] P. Rossmanith and W. Köhler. Macromolecules, 29:3203 (1996).
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